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Abstract 

This paper develops a non-local potential formalism for general gauge theories. With 
the help of this mathematical apparatus an argument for quantisation of the generalised 
charge is given, assuming that the Dirac monopoles are present. 

Introduction 

It is well known that in the Maxwell theory of the electromagnetic field 
the electromagnetic potentials can be expressed non-locally through the 
quantities of the electromagnetic field tensor to which they correspond.]" 
The non-locality in this case is represented by the path dependence of the 
potentials, which is closely related to the invariance of the electromagnetic 
field under the gauge transformation of the local potentials in the following 
way: Any change of the path of the non-local potentials corresponds to a 
gauge transformation performed on the potentials in the local theory. 

In the quantum mechanics, where the potentials of the electromagnetic 
field seem to play an essential role (e.g. Aharanov-Bohm effect), to some 
extent the non-local formulation allows a different view of  the problem 
of the quantisation of the electromagnetic field to be taken (Mandelstam, 
1962). The theory seems to have some advantage in attacking the problem 
of  the quantisation of the magnetic monopole even if the physical side is 
somewhat overshadowed by the body of the mathematical apparatus. 

In what follows we try to formulate a consistent non-local potential 
formalism of the non-linear generalisation of the Maxwell theory. The 
results can be applied directly to the theory of the Yang-Mills field and 
perhaps, with some modification, to the theory of gravitation as well. As 
an illustration a non-linear generalisation of the magnetic monopole is 

"~ The non-local potentials for classical electrodynamics have been discussed, for 
example in the paper by Rohrlich (1966). 
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sketched and it is observed that such a theory would impose certain con- 
ditions on the charges which are very much in analogy with the Dirac 
quantisation of the charge of the magnetic monopole in ordinary electro- 
magnetic theory. 

1. Path-dependent Potentials 

We adhere to the commonly used notation, considering the wave function 
~(x)  as a vector in an abstract n-dimensional space R n parameterised by 
a point x in an ordinary three-dimensional space of events E. 

The wave function ~(x) is to be considered a vector given by the equi- 
valence classes under the gauge transformation group. The representation 
of this group S(x)  acts linearly in the vector space R". 

To define the parallel displacement of ~(x) along a line element dx 
in E a field of n x n matrices F~(x) (linear connection) is given. This is a 
vector in E, but under the gauge transformation S(x )  undergoes the 
change 

Fu'(x) = SFu S -1 + (0, S ) -  S - ' ( x )  (1.1) 

The infinitesimal displacement of O(X) along dx is then 

~O(x) = - r , ( x )  dx" O(x) (1.2) 

The vector ~ has the transformation property in R": 

6'(x) = S(x) r (1.3) 

In similar fashion to the usual tensor calculus one defines a gauge-tensor 
field to be any field A(x) ofn  x n matrices which transform as 

A'(x) = S(x)  A(x) S -~ (1.4) 

A gauge derivative of  a wave function is defined as a gauge vector field 

V, r = (G - G ) ' / '  0 .5)  

where 9, is a covariant derivative. 
Applied to a gauge tensor A(x) 

V. A(x) = OuA(x ) -- [Fu; A(x)] (1.6) 

so as to preserve the distributive action of the symbol. 
Given a gauge group, there is a restriction on the parallel displacement 

in the sense that any displacement along a curve in Eis to be a representation 
of a gauge group in R". This results in F.dx"  being a member of the Lie 
algebra of  the gauge group. Of  course the largest group which can be 
embodied in this formalism has to have the full linear representation in 
R" and F is left to be, in this case, an arbitrary n x n matrix field. 
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The integral form of the parallel displacement can be expressed with 
the help of the product integral (ordered integral) 

( ; )  80(xl) = e x p  F . d x  ~' O(x) (1.7) 
X 2 / 

with the integration along a given curve in E. 
If  0 is now displaced parallel around an infinitesimal loop enclosing the 

area dx[~'fx "~ then, to the first order, it is possible to take 

8~ = F~.~(x) dx ~' 6x ~ O(x) (1.8) 

where F.~ = 8[.F. 1 - [F.;F~] is the curvature gauge tensor. 
We shall call F .  and ft .  to be gauge related if there exists a gauge trans- 

formation U(x) such that 

lY.(x) = UFu(x) U -x + O. U. U -1 (1.9) 

Obviously, if F and/~ are gauge related then 

Fis = UFu U-I (1.10) 

Consider a set z " =  z"(x, z) of regular parametric curves in E. such that 
each point x is given only one curve starting at x and running to infinity: 

z(x,z): z-I- < O;-oo) z(x; O)= x (1.11) 
z(  x ; -o~ ) = -~o 

Define F and F* to be path-related if 
o 

ru*(x )  = f dzU -I r .b(z )  U(z)  ~176 ~) azb(x, ~) Ox" " Or (1.12) 
--C0 

where U(z(x,z)=exp(~5| is the displacement along the path 
z ( x , . ) .  

We shall prove that if F* and F are path-related they are also gauge- 
related and vice versa. 

Proof. It is to be noticed at first that F,* is a vector in E, however under 
the gauge transformation S(x) with the boundary condition lim S = 1 

Ix 1--+ ~0 
remains unchanged. Due to the vector character of F,* we are allowed to 
choose a special coordinate system (fi, tz, t3) in E such that the set of the 
regular curves z(x,z) serves as the set of the coordinate lines, say 
t2 = const, t3 = const, but otherwise arbitrary. In this system (dashed) 

P ~ ( t .  t~, t3) = 0 
t l  

F 2 ( t l ,  t2, t3)  = f dzU-l(z)F21(z, t2,  ta) U ( z )  

t l  

/~a(tl, t2, ta) = f dzU-1(z)/~al(Z, t2, t3) U(z) 
--CO 
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l; ) U(z) = exp /~l(s; t2; t3)ds (1.13) 
- c o  

In succession to this we perform a gauge transformation in R" to the new 
symbols/s 

/~1 -+ R1 = 0 

/~3 -+/s (1.14) 

It is already seen that the matrix of that transformation is U(t) with the 
boundary condition U ( - m ) =  1. 

Hence we are left with 

/~1" = 0 
t l  

/~2" = f d*/s t2; t3) (1.15) 
- c o  

t l  

P3* = f d ,  R3,(T; t2; t3) 
- c o  

which are identities if and only if 

F I * = K 1  # 0  

F2* = K2 (1.16) 

I'3" = K3 

But K and F are already gauge-related hence so are F and F*. 
It is seen that the path-related quantities are a natural generalisation of 

the non-local potentials in the Abelian-gauge theory. 
One can rewrite the above theory in the formalism of the four-dimensional 

space-time of events E by merely increasing the number of indices. 

2. Monopoles and Strings 
The apparatus of the first section is employed to describe a physical 

situation. This is done by writing down the equations of motion for the 
curvature. 

V~ F ~  = e~ 
#,v =0 ,  1,2,3 (2.1) 

Vtu F~o ~ = 0 

where ei, eo = e is electrical current and charge respectively. As mentioned 
before, the present discussion ignores the time dependence of the field but, 
if required, it could be trivially embodied into the formalism. 

The first set of equations of motion represents a set of non-linear dif- 
ferential equations for F u so as to make them reflect the physical reality. 
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The second set is merely a condition stating that Fu~ is a curvature. Flirting, 
as we are, with the idea to set the right-hand side of the second set different 
from zero at the points of magnetic charge, we face immediately the task 
of restoring the consistency of the whole set. The problem is more complex 
than in an Abelian-gauge theory. The additional difficulty is how to define 
the gauge derivative. 

One way how to approach this probIem is to introduce Dirac's strings 
(Dirac, 1948). 

We write the new equations in the form 

V~ R~v = e~ (2.2) 
Vt, Rzal = g 

The solution R~v is to be a gauge tensor, antisymmetric in indices # and v. 
This tensor is to be written as a sum of two gauge-tensor fields. 

R.~ =/~.v + G~,~ (2.3) 

Fv~ being in the form of a curvature 

F,~ = Ot. F,~ - [F,; F~] (2.4) 

and G,~ a singular field which takes the non-vanishing values only along 
a line starting at the charge g and running into infinity (string). The co- 
variant derivative is then defined as 

V, = 0 r - F ,  (2.5) 

everywhere, including the line of the string. The set of the equation of 
motion is equivalent to 

V. F,~ = - V ,  G,v + e~ 
(2.6) 

Vc1 G231 = g 

With the help of the path-related potentials we shall determine the singular 
gauge tensor field G.~ to be 

dz~(Xo; ~) 
G~ = g ~  at (c~, fi, 7 = 1, 2, 3) (2.7) 

where Oz~(xoz)/O~ is the tangent at the point Z(Xo, V) to the string starting 
at the charge g located at the point Xo. 

We proceed to define the quantity ft .  

o 

f Oza(x,~ z) Oz~(x,~ v) Oz (2.8) 
= u Ro (z) U(z)  

- - c O  

This is in a sense a generalisation of the path-related quantity F.* defined 
in the first section. We assumed that R.~ can be written in the form of the 
curvature F.~ almost everywhere. Hence, taking into account the results 
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of the previous section, F .  and/~ ,  are gauge-related everywhere except 
on the string. By now we still have one degree of 'freedom' in hand: We 
did not specify the position of the string yet. This is simply done by defining 
F .  and/~, to be gauge-related everywhere, including the string. 

As the next step we prove the identity: 

dz~(xo z) U_ ~ g(xo) U (2.9) ~.v(x) = u - ' ( x )  R.~(x) U + ~.~ ~ - -  

where U(x) is the parallel displacement along the path leading to x, euw the 
completely antisymmetric tensor and Xo the location point of the magnetic 
charge g. It is to be noticed that F,~(x) is singular along the path from Xo 
which is to be identified with the string. 

Regular system 

of paths ,- -oo  

To prove the above identity we transform (2.8) and (2.7) to a new co- 
ordinate system (tl, t2, t3) in E such that the set of the paths becomes the 
set of the coordinate lines t2 = const, t a = const. Afterwards we perform a 
gauge transformation with U(h) and in agreement with the discussion in 
the first section we obtain the transformed equations (2.8) and (2.9) in 
the form 

/~(q  ; t2; t3) = 0 

/~2(tx; t2; ta) = R2t(z; t2; ta)& (2.10) 

t l  

/~3(q; t2; t3) = f R31(v; t2; t3)& 
~eo 

/~21 = R21 
/~31 = R31 (2.11) 

/~32 = R 3 2  -[- g 

The first two equations of the set (2.11) are easily seen to be identities. To 
show that the same is true for the remaining one we calculate 

~3 r2(t; t2;t3) - a~ r~(t; t=;t~) 
t t 

= f (V~R2~-VzR30&+ f ([r3;R2,]-[F2;R3~1)dz (2.12) 
--0o woo 
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where the arguments of the integrands are taken at the point (z;t2;ta). 
But according to our definition the original F and/~ in (2.8) are gauge- 
related. This amounts to/~ = F in the new gauge. With the help of (2.8) 
the first bracket of the second integral in (2.12) can be evaluated by parts 
and the second integral is seen to be equal to [F2;Fa](tl;t2;t3). Hence 

/. 
F2a = dz(V~R2a(z; t2; ta) + g6(z - to)) (2.13) 

- - o o  

where we used the equation of motion 

Vtl R23~ = g (2.14) 

But V~ = O~- F~ = O~ in the new gauge and the last equation of (2.11) is 
seen ready to be an identity. Going back to (2.9) and using the fact that 
/~  and Fu are gauge-related, the singular field G,~ is determined by (2.7). 
This completes our proof and indicates that the above-given theory with 
strings is self-consistent. 

3. Quantum Condition for Generalised Charge 

Before proceeding to give an argument for quantisation of charges in 
the theory presented, we wish to add one or two comments in addition to 
the above discussion on path-dependent potentials. 

The path-related quantities F~* have been defined on the paths extending 
to infinity. Obviously there is no need to dwell upon that view; indeed, 
any set of regular paths would do. Especially if we consider a closed curve 
in a regular plane, then the parallel displacement of the wave function 
~(x) along the curve, starting at Xo, is given by 

g4,=exp{Or~dx")~,=exp{ff U-1FuvUdxUdx "} (3.1) 

where U is the displacement along the set of regular paths streaming out 
of point x0; the first of the two integrals being an ordered one. This expres- 
sion is essentially the same as the one derived by Schlesinger (1927). 

We give the path-dependent theory its final shape: Charges are described 
by the path-dependent wave function ~,(x,L) (the path L is independent 
of the set of parametric paths used in the definition of the path-like poten- 
tials). According to Mandelstam (1962) we define a path derivative, being 
a change of (J(x,L) along the path L: 

6v ~(x, L) = lim O(x, L + dx) - ~(x, L) 
a~,-,o dx ~ (3.2) 

the equation of motion for charges (Schr/Sdinger equation) is 

i Ot O(x, L) = -6~ ~ ~p(x, L) (3.3) 
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The link between a path-dependent formalism and the local one may be 
established by defining 

where e is the electric charge and 0(x) the local wave function. The field 
F .  is to be determined from the field equations given in Section 2. 

Let us now consider the situation when there is an electric charge moving 
in the field of a static magnetic monopole, located at the origin of the 
coordinate system. O(x,L) is to be the wave function of the electric charge 
alone and the field F .  will be determined from the spherically symmetric 
solution R..  of the field equations. 

V .  Rt~ ~ = 0 

Vtl R231 = g (3.5) 

Let us try to find such a solution on account of symmetry alone. 
For this purpose we introduce the polar coordinates (r, 0, p). From the 

indistinguishability of the different directions along the sphere r = const, 
t = const, it follows that 

Rot = Rot = Ro~ = 0 (3.6) 

Now choose the point 0 = p  = 0 on this sphere to be a pole, the set of 
meridians through it as the set of regular paths with help of which we can 
define the path-related potentials. Of course, each path is a geodesic and 
at any point (r, O, p) the field Roo is equivalent to the field at (r, 0, 0) in the 
sense that it is obtained from one point to another by a parallel displacement 
along the meridian 

Rop(O; p) = U(O; p) R0o(0; 0) U-I(O; p) (3.7) 

With the help of the integral formula (3.1) we are in the position to evaluate 
the parallel displacement of ~ along the equator of the sphere. 

Pole 

p = (0,0) 

Parallel 

- -  Equator 0 =~.  

Meridian y = Yo 
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This is given by 

6~ = exp (ieRop(O, 0) 2rcr 2) ~ (3.8) 

where the ordered integral along the equator disappeared as the field Rop 
along any parallel is constant. We now take advantage of an argument 
due to Loos (1965) by which the parallel displacement of a wave function 
along a great circle is identified. This is because of the spherical symmetry 
of the field. 

Hence the restriction 

eRop(O, O) = Kr-2  (3.9) 

where Kis  the solution of the equation 

1 = exp (i27rK) (3.10) 

To find the physical interpretation of K we calculate eVrRoo. This is done 
most easily in a gauge where F / =  0. In this new gauge 

~ r  ~0o(0, 0) = ~ ~(r) 

where/~ = UKU-1;  ~ = UeU -~ and Uis the same matrix as before. Looking 
back to the equation of motion 

/s is to be identified with the product ~. ~ of the magnetic and electric charges. 
The quantisation condition for g and e then reads 

1 = exp (i2rcg. e) (3.11) 

Conclusion 

The argument for the quantisation of charge in this work is not the same 
as the one given by Dirac (1948). In Dirac's theory a string must never pass 
through a charged particle. This is a necessary condition if we require the 
equation of motion to follow from an action principle. The space thus 
becomes multiply connected. Postulating that the wave function be single- 
valued, Dirac derives the quantum condition for charge. 

In our work the strings can pass through any region of the space. The 
quantisation follows from the spherical symmetry of the field produced 
by a singular monopole. Strings are employed for only one purpose, to 
write down the equation of the field in the presence of monopoles. Whether 
both arguments are two sides of the same coin is not clear. 
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